142 research outputs found

    A DNA algorithm for the batimetric mapping in the lagoon of Venice using QuickBird multispectral data.

    Get PDF
    During the last decade, several studies have focused on the use of passive multispectral remote sensing to derive the bathymetry in coastal zone. In particular, data acquired with the SPOT and the Landsat TM/ETM+ sensors have been used to derive models of bathymetry at medium scales. Until now, the successful application of passive remote sensing techniques to bathymetry mapping was restricted to costal zones with clear water and small changes in the seabed, but with the availability of the high resolution satellites (IKONOS, Eros-A1, QuickBird, SPOT-5), researchers have a new powerful tools to study environmental phenomenon at large scale. This paper focus on the use of high resolution imagery to estimate water depths in a lagoon environment. Starting from the depth of penetration zone method proposed by Jupp for costal bathymetry mapping, a new genetic algorithm was developed for lagoon bathymetry mapping. The potential use of the QuickBird multispectral data, together with the new algorithm developed, was tested in a complex environment such as the lagoon of Venice (Italy). Several tests have been performed into five different test sites (S.Erasmo littoral, Treporti canal, S. Felice canal, Canesa canal and Bari canal), where 18 radiometric transects were traced to study the lagoon bathymetry. The accuracy of the batimetric measures was assessed by using other known soundings depth points within the test area. An interesting correlation between the real and the computed bathymetry was found. The limit of a such analysis lies in the correct calibration of the model, that, for the complex lagoon ecosystem, is not a simple task

    Quantitative evaluation of water bodies dynamic by means of thermal infrared and multispectral surveys on the Venetian lagoon

    Get PDF
    Surveys employing a two channel Daedalus infrared scanner and multispectral photography were performed. The spring waning tide, the velocity of the water mass, and the types of suspended matter were among the topics studied. Temperature, salinity, sediment transport, and ebb stream velocity were recorded. The bottom topography was correlated with the dynamic characteristics of the sea surface

    A preliminary evaluation of ERTS-1 images on the volcanic areas of Southern Italy

    Get PDF
    The test site selected for the investigation covers nearly all the regions of active and quiescent volcanism in southern Italy, i.e. the eastern part of the island of Sicily, the Aeolian Islands and the area of Naples. The three active European volcanoes (Etna, Stromboli and Vesuvius) are included. The investigation is in the frame of a program for the surveillance of active volcanoes by geophysical (including remote sensing thermal methods) and geochemical methods. By the multispectral analysis of ERTS-1 data it is intended to study the spectral behavior of the volcanic materials as well as the major geological lineaments with special reference to those associated with the volcanic region. Secondary objectives are also the determination of the hydrographic network seasonal behavior and the relationship between the vegetation cover and the different type of soils and rocks

    Results of Skylab investigation over Italy

    Get PDF
    The author has identified the following significant results. Multispectral high resolution photography of S190A was successfully applied to the detection of paleoriverbeds in flat lands. Results of SL-3 mission were compared to those of LANDSAT for two regional geological surveys (linear structures) on the islands of Sicily and Sardinia. On Sicily, the seasonal conditions were unfavorable for Skylab while LANDSAT played a major role in discovering long, unknown lineaments of great interest for the geodynamics of the area. On Sardinia, owing to the vegetation type and to the geomorphic conditions, the Skylab imagery was successfully employed to describe the network of linears, both regional and local. Results can be used to study the relationship between linears, actual fracturing and the occurrence of mineral deposits

    A new methodology for in-flight radiometric calibration of the MIVIS imaging sensor

    Get PDF
    Sensor radiometric calibration is of great importance in computing physical values of radiance of the investigated targets, but often airborne scanners are not equipped with any in-flight radiometric calibration facility. Consequently, the radiometric calibration or airborne systems usually relies only on pre-flight and vicarious calibration or on indirect approaches. This paper introduces an experimental approach that makes use of on-board calibration techniques to perform the radiometric calibration of the CNR’s MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) airborne scanner. This approach relies on the use of an experimental optical test bench originally designed at Politecnico di Milano University (Italy), called MIVIS Flying Test Bench (MFTB), to perform the first On-The-Fly (OTF) calibration of the MIVIS reflective spectral bands. The main task of this study is to estimate how large are the effects introduced by aircraft motion (e.g., e.m. noise or vibrations) and by environment conditions (e.g., environment temperature) on the radiance values measured by the MIVIS sensor during the fly. This paper describes the first attempt to perform an On-The-Fly (OTF) calibration of the MIVIS reflective spectral bands (ranging from 430 nm to 2.500 nm). Analysis of results seems to point out limitations of traditional radiometric calibration methodology based only on pre-flight approaches, with important implications for data quality assessment

    Multispectral photography of Italian volcanic activity, vegetation, and Paleo River beds

    Get PDF
    There are no author-identified significant results in this report

    Volcanology, geology, and vegetation of Sicily and Italy

    Get PDF
    There are no author-identified significant results in this report

    Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets

    Get PDF
    <div><p>Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway <i>i</i>.<i>e</i>., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times <i>vs</i>. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation.</p></div
    corecore